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The effects of circumferential curvature and strong density variation on I& Stewartson 
layers are investigated. The solution of the third-order ordinary differential equation 
found to govern the flow is obtained by numerical integration for layers extending 
in the positive radial direction and in terms of a Frobenius-series solution for layers 
extending in the opposite direction. Due to the variation of the basic density field, 
the I& layer is compressed in the positive radial direction. I& layers extending in the 
negative radial direction are likely to extend fully to the axis of symmetry because 
of the density variation and, consequently, a distinction in terms of a geostrophic 
flow and an a layer flow cannot be made. Curvature effects are found to play a 
significant role in this case. A simple case of driving by a differential rotation of part 
of the horizontal boundaries is examined. 

1. Introduction 
The dynamics of contained rapidly rotating gases has received considerable 

attention in connection with the interest in Uranium hexafluoride (UP,) gas 
centrifuges during the last decade. These centrifuges usually operate with a peripheral 
Mach number between one and ten. It is well known (cf. Howard 1970; Sakurai & 
Matsuda 1974; Olander 1978) that a variety of boundary-layer and shear-layer 
phenomena arise in rapidly rotating gas flows, and that the flow may often be 
controlled by these boundary layers. For the case where the ratio of the scale height 
of the basic density field and the boundary-layer thickness is infinitely large, Sakurai 
& Matsuda (1974) found that the compressible Stewartson ,@ layer is quite similar 
to the corresponding layer for a homogeneous fluid. The effects of a weak variation 
of the density field of the rigidly rotating gas across the Stewartson layer have been 
investigated by Mikami (1973), Nakayama & Usui (1974), Durivault et al. (1976), 
Durivault & Louvet (1976), Louvet & Durivault (1976), and Bark & Bark (1976) for 
the ,@ layer and by Nakayama & Usui (1974) and Bark & Bark (1976) for the I& layer. 
These approximate solutions are valid near the periphery of gas centrifuges, where 
the Stewartson layers are thin, and thus the variation of the density field across such 
layers is small. 

In most of the centrifuge, the situation is different however. Owing to the rapid 
rotation, the density is in practice usually very small apart from the immediate 
neighbourhood of the periphery. This has some interesting consequences for the 
structure of the boundary layers. Because the gas centrifuges, in general, are slender 
the local Ekman number is usually sufficiently small everywhere for Ekman-layer 
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flow to occur a t  the top and bottom boundaries, but it can be shown that Stewartson 
layers outside the immediate neighbourhood of the periphery do often have a radial 
lengthscale of the same order of magnitude as the radial dimension of the container. 
These layers may be characterized as thick, and they are influenced by both a strong 
density variation across the layer and curvature effects. Bark & Meijer (1982) have 
investigated the structure of such a thick I8 Stewartson layer. They found that the 
layer is compressed in the positive radial direction, but is expanded in the opposite 
direction. If an inner cylinder is present, a weak geostrophic flow was shown to appear 
in the outer parts of the container for sufficiently large Mach numbers. 

It is the purpose of the present investigation to  analyse the structure of thick h! 
Stewartson layers. The heavy-gas limit is discussed in Appendix B. 

2. Formulation 
Consider an ideal, viscous and heat conducting gas of constant temperature TZ. 

The gas is contained in a straight cylindrical or annular vessel with flat top and bottom 
caps. The container walls are assumed to be perfectly thermally conducting. For 
containers with thermally insulating walls, the boundary-layer structure will be 
different from the present one (Bark & Hultgren 1979). The container is rotating 
around its axis of symmetry with the constant angular velocity 52. The rate of 
rotation is taken to  be very large in the sense that effects of gravity are ignored. A 
cylindrical coordinate system ( r ,  4, z )  is to be used with the z-axis coinciding with the 
axis of rotation. The radial and axial coordinates are non-dimensionalized with half 
the container height H. The top and bottom are thus taken to  be at z = f 1. 

For a rigidly rotating isothermal gas, the non-dimensional density and pressure 
fields are given by 

where ro is a non-dimensional reference radius, y = c p / c ,  is the ratio of specific heats 
a t  constant pressure and volume, and 

is a local Mach number a t  the radial location ro. R is the gas constant. The reference 
density pZ is that at the reference radius, and the pressure scale is ~ z ( H 5 2 ) ~ .  

Small steady axisymmetric perturbations on the state of isothermal rigid-body 
rotation will be considered. The deviation flow field is assumed to be caused by 
differential rotation or axisymmetric heating of both of the horizontal boundaries. 
The driving is assumed to be symmetric with respect to z = 0. A Rossby number can 
be defined as 

A52 
5 2 ’  

c = -  

where A52 is a characteristic differential angular velocity of the boundaries. If the 
perturbation motion is due to differential heating, a Rossby number can be defined 
in an  analogous manner. The Rossby number is assumed to be very small so that 
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linear theory can be used. The dependent variables of the perturbation flow field are 
scaled as 

U* = sHSZU, p* = ~ p g ( H Q ) ~ p ,  (2 .5a ,  b )  

p* = epgp, T* = STZ T ,  (2.5c,  d )  

where an asterisk denotes dimensional variables, u = (u, v,  w )  is the velocity, p is the 
pressure, p is the density, and T is the temperature. 

Using (2 .5 ) ,  the following linearized equations for the perturbation motion can be 
derived : the equation of continuity 

l a  aw 
r ar a Z  
- - ( r p , u ) + p , -  = 0; 

the equations of conservation of momentum 

aP a 
- 2p, v -pr  = --+ ar E [ (P - 4) r u + (5 + 5) (V mu)], 

2p,u = E ( P - $ ) v ,  

(2 .7a )  

(2 .7b )  

( 2 . 7 ~ )  
V 2 w + ( $ + ~ ) a Z ( V * ~ ) ] ;  a 

the energy equation 

the equation of state 
-4a2rp,u = EV2T; (2.8)  

(2.9) P = --(P+PoT); 4 
Y W  

where 

is the local Ekman number at the reference radius ro, 

(2 .10a)  

(2.10b) 

and < is the ratio of the bulk and dynamic shear viscosities. p is the’ dynamic shear 
viscosity, a=-, P 

k ( 2 . 1 0 4  

is the Prandtl number, and k is the thermal conductivity. p, 5, k, c p  and y are assumed 
to be constants. The parameters a, [and y are assumed to be of order unity, whereas 
the Ekman number E is taken to be vanishingly small. 

The system of equations (2.6)-(2.9) are to be solved subject to the boundary 

(2.11 a)  
conditions 

(2.11 b )  

u(r, f 1) = vg(r )  eg, ri < r < rp, 

T(r ,  k 1) = TB(r), ri < r < rp, 

u(ri,z) = u(rp,z) = 0, -1 < z < 1 ,  

(2.11 c )  

( 2 . 1 l d )  

where vg and TB are the prescribed azimuthal velocity and temperature distributions 
of the horizontal boundaries, eg is the unit vector in the azimuthal direction and ri 
and rp are the inner and outer radii of the annulus respectively. If the container is 

T(ri ,z)  = T(r, ,z)  = 0 ,  -1 < z < 1, 
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a cylinder ri is equal to zero, and the boundary conditions at that radius are replaced 
by the condition that all physical quantities be bounded on the axis of symmetry. 

The motion in the interior is described by the limiting solution to (2.6)-(2.9) when 
the Ekman number tends to zero. For the case of symmetric forcing, this geostrophic 
flow has been discussed by Hashimoto (1977) and Bark & Hultgren (1979). Therefore, 
only the essential features of this flow need be described here. In contrast to a 
homogeneous fluid, the geostrophic azimuthal velocity component is not independent 
of the axial coordinate. Also, the lowest-order Ekman layers disappear if the forcing 
is symmetric, and, in that case, the geostrophic flow field must itself satisfy the no-slip 
and thermal boundary conditions a t  the horizontal walls. Vertical & and l$ 
Stewartson layers, in general, appear at vertical boundaries and at radii where there 
are discontinuities in the prescribed driving at  z = f 1 .  The vertical boundary layers 
have been discussed by, among others, Bark & Bark (1976) for the case when the 
boundary-layer thickness is small but finite compared with the basic density scale 
height. These investigators presented an exact solution for the ,!& layer, a numerical 
solution for the l$ layer, as well as uniformly valid asymptotic solutions for both 
layers. The internal flow in gas centrifuges has also been analysed using the Onsager’s 
pancake approximation by Wood & Morton (1980) and, with curvature effects 
incorporated by Wood, Jordan & Gunzburger (1984). 

Because of the rapid rotation of practical gas centrifuges, the local Ekman number 
can vary by several orders of magnitude across the radial extent of the container. 
As a consequence, Stewartson layers in the centre region of the container are much 
thicker than the ones at the periphery. Also, UF, centrifuges are usually very slender 
because their separation efficiency increases with the height of the device. Thus, a 
Stewartson layer in the vicinity of the axis of rotation is not only affected by the 
strong density variation across the layer, but also by its circumferential curvature. 

In order to account for these properties of the flow in a thick &layer, a limit process 
similar to the one used by Bark & Meijer (1982) for a thick I& layer will be used, namely 

E+O, ro = O(,@), M = O ( l ) ,  fixed. (2.12a, b,  c) 

Equation (2.12b) means that the layer is in the neighbourhood of the axis of 
symmetry; (2 .12~)  implies that the scale height of the basic density field is O(,!&) at 
the reference radius. In  view of (2.12b), a stretched coordinate is suitably defmed as 

r r=-$ 

The basic density field can be written in terms of the stretched coordinate as 

where 

(2.13) 

( 2 . 1 4 ~ )  

(2.14b) 

An order-of-magnitude analysis shows that a meaningful perturbation problem can 

u = O ( E q ,  2, = O(,@), w = O(B), (2.15 a-c) 
be constructed if 

p = O(I&), p = 0(1), T = O(1). (2.15d-f) 
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Using (2.6)-(2.9) and (2.14) and rescaling the dependent variables as indicated by 
(2.15), one finds the following leading-order equations: 

where 

(2.16) 

(2.17 a )  

(2.17 b)  

(2.17 c )  

(2.18) 

(2.19) 

(2.20) 

From (2.16) to (2.19) it  follows that all quantities are independent of the axial 
coordinate except for w, which is linear in z. Combination of (2.17b) and (2.18), 
followed by integration once, yields 

(2.21) 

where c, is a constant of integration. From (2.14a), ( 2 . 1 7 ~ )  and (2.19) one can derive 
the following equation : 

P 
Po 

where q=-- .  

(2.22a) 

(2.223) 

A t  the horizontal boundaries, two corner regions of sizes ,@XI& and ax.?& 
respectively, are needed in order to fulfil the no-slip and thermal boundary conditions. 
The analysis of the corner regions is straightforward and similar to the one given in 
Hultgren, Meijer & Bark (1981). One finds the following Ekman suction formula: 

The equations (2.16), (2.17b), ( 2 . 2 2 ~ )  and (2.23) lead to 

(2.23) 

(2.24) 

Finally, combination of (2.21), ( 2 . 2 2 ~ )  and (2.24) leads to a non-homogeneous 
third-order ordinary differential equation governing the azimuthal velocity com- 
ponent. By inspection, one finds that a homogeneous solution to this equation is 
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given by v = 7. The method of reduction of order then yields the following second- 
order differential equation : 

= 

where 
9 = f ’ 

2, = 7f. 

and the azimuthal velocity is given by 

(2.25 b)  

(2.25 c) 

The quantity dqldq can be computed from g using (2.24). When this quantity and 
the azimuthal velocity have been determined, the temperature field can be computed 
through (2.22a). As an alternative, the temperature field can be constructed from g 
by integrating (2.21). The solution of (2.21) and (2.25) for the centre region 
(0 < 7 < vo) and the outer region (7 > q0) will respectively be described in the 
following two sections. 

3. The centre region 
For the case when there is a discontinuity in the external driving, but no inner 

solid boundary, at  the radius To,  the layer extending in the negative radial direction 
is likely to extend all the way to the axis of symmetry. By considering the behaviour 
for small 7, inspection of (2.22a) and (2.21) gives 

c1 = 0 (3.1) 

in order for the physical variables to remain finite at  the origin. A Frobenius-series 
solution for the dependent variable g can be constructed in a straightforward manner 
and the velocity and temperature fields can be constructed therefrom. The details 
of this procedure are given in Appendix A. One finds 

21 = (W-:(e-To))r+Bv,(r)+v,(T), (3.2) 

T = T,+BTC(7)+TP(7), (3.3) 

where w and 0 are given by (A 8) ;  B and To are constants of integration; vc and T, 
are the homogeneous solutions; and vp and Tp are the particular solutions corres- 
ponding to the non-homogeneous term in (2.25a). In the limit of the Mach number 
tending to zero, vc and T, become I,(p) and zero respectively, where I ,  is the modified 
Bessel function, see Appendix B. 

The Frobenius-series solutions were used to calculate the dependent variables vc 
and T, taking the physical parameters to be those of UF6 at room temperature, i.e. 
y = 1.067 and CT = 0.95. Figure 1 shows the azimuthal velocity and the temperature 
for Mach numbers equal to 0, 1 , 2  and 5 for the case when the radius q0 = 1. Figure 2 
shows the corresponding results for r0 = 10. As the Mach number increases, the swirl 
velocity approaches rigid-body rotation over a large portion of the interval. The 
reason for this can be deduced from ( 2 . 2 5 ~ ) :  as the density distribution becomes 
vanishingly small, g must also vanish in order to remain finite at the origin and, hence, 
the azimuthal velocity approaches rigid-body rotation. From (2.21) it then follows 
that the temperature must approach a constant in most of the centre region. That 
the latter is indeed the case can be seen in figures 1 (b)  and 2 (b ) .  
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FIGURE 1.  Centre-region solution, qo = 1:  -, M = O . - - -  t 1 )  1.-.- 1 ,  2. - - - - - -  1 5. 
(a) azimuthal velocity. (b)  temperature. 

4. The outer region 
For the flow region extending in the positive radial direction, the particular 

solution to (2.25) can be interpreted as the geostrophic flow, and the homogeneous 
solutions are associated with flow in the Stewartson layers. For large values of p,,, 
i.e. as q+ +a, the following approximations of the solutions to (2 .26~)  can be 
constructed : 
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FIGURE 2. As figure 1 except qo = 10. 

where gI is the particular solution, g +  - are the homogeneous solutions, and 

q+ = J:o (1 + ~ ~ q ’ ~ ) i p ! ( q ’ )  dq’ (4.2b) 

is a fast variable. As l;lo+ + m ,  the WKB-type solution (4.2) reduces to the 
leading-order approximation for the Stewartson layer given by Bark & Bark (1976) 
for the case when the density variation is weak across the layer, and the solution given 
by Sakurai & Matsuda (1974) when there is no density variation. Integration of (4.1) 
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where vP = rP/& and c2 is a constant of integration. The azimuthal velocity 
corresponding to (4.3) is obtained through (2 .25~)  and the temperature is approxi- 
mated by 

It is easily verified that (4.3) and (4.4) correspond to the slender-centrifuge approxi- 
mation (Bark & Bark 1979) for the geostrophic flow. If, for the Stewartson layer at  
the periphery, the density variation is weak and the effects of curvature can be 
ignored, then, with the boundary conditions (2.11), this layer does not occur to 
leading order and the vertically averaged geostrophic azimuthal velocity and 
temperature fields must vanish at the solid boundary. Assuming r p / H  = o(l) ,  i.e. 
invoking the slender-centrifuge approximation, then leads to 

q x 2fI. (4.4) 

c2 = -cl(lnqp-+ In ( 1  +~~r]i)). (4.5) 

The solution g+ in (4.2) was used to give starting values to a three-step fourth-order 
RungeKutta scheme, which, in turn, provided the starting values for the numerical 
integration towards qo using a fourth-order Adams implicit method (cf. Collatz 1960, 
p. 126). Once the appropriate solution to ( 2 . 2 5 ~ )  had been obtained, it was 
numerically integrated once, again using a fourth-order Adams implicit method. The 
azimuthal velocity could then be obtained from (2.25~).  The temperature field was 
then computed by using ( 2 . 2 2 ~ )  and (2.24) (with wB = TB = 0). These solutions will 
be referred to as ws and T,. In the limit of the Mach number tending to zero, ws and 
T, approach K,(r]) and zero respectively, where K ,  is the modified Bessel function, 
see Appendix B. 

In the numerical calculations presented here the physical parameters are the same 
as in the previous section, i.e. y = 1.067 and v = 0.95. The radius q0 was taken to 
equal unity. Calculations were performed for Mach numbers equal to 0, 1, 2 and 5.  
The azimuthal velocity ws and the temperature Ts are shown in figure 3. The solutions 
were normalized such that the azimuthal velocity equalled unity a t  r = To. The strong 
increase of the basic density field in the positive radial direction significantly reduces 
the boundary-layer thickness compared with the case when the basic density scale 
height is infinitely large in comparison with the boundary-layer scale. These results 
are in agreement with those of Bark & Bark (1976), who found that the boundary 
layer is slightly compressed when there is a weak variation of the density across the 
layer, and the findings by Bark & Meijer (1982) for thick I$ Stewartson layers. 

5. A simple example 
As a simple illustrative example, the following form of the forcing was assumed: 

(5.1 a) 

(5.1 b )  

(5.1 c) 

In  this case, the particular solutions up and Tp do not appear. The conditions to be 
applied at r] = qo are that the azimuthal velocity, the temperature and their first 
derivatives are continuous. The conditions on the first derivatives follow from the 
fact that the flow cannot sustain any shear discontinuities nor contain any heat 
sources. These four conditions lead to a four-by-four system of linear equations for 
the unknowns T,, B, C and c,, where C is the multiplicative constant of integration 
for the Stewartson layer extending in the positive radial direction (see $83 and 4). 

11 F L M  169 
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FIQURE 3. ,@ layer extending in the positive radial direction, qo = 1. For legend see figure 1. 

t 

The solutions vI and TI were obtained using (4.1), (4.3) and (4.5) to provide starting 
values for a numerical procedure analogous to the one utilized to obtain vs and T,. 
The system of equations was then solved using the IMSL routine LEQT2F. In  all 
cases investigated, the constant c1 was found to be smaller than the judged accuracy 
of the solution. Hence, it has been shown numerically that, in this case, a geostrophic 
flow does not appear in the outer region. Also, it is shown in Appendix B that c1 equals 
zero in the leading-order approximation for the heavy-gas case. 

Figures4 and 5 both show the total azimuthal velocity and temperature distributions 
for Mach numbers equal to 0, 1, 2 and 5. The values of the physical parameters are 
the same as in the previous sections, i.e. those of UF, at  room temperature, and the 
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FIQIJRE 4. Response to differential rotation, q,, = 1. For legend see figure 1. 

radius r ] ,  = 1 and 10 in figures 4 and 5 respectively. (For the purpose of determining 
vI and T,, the peripheral radius qP was taken to equal 5 and 10 for the cases 
corresponding to these two figures respectively.) 

As can be seen in these figures, both density variation and curvature effects have 
a strong influence on the solution. For large values of q,, where curvature effects are 
of minor importance, a geostrophic zone can be identified in the centre region. In this 
zone, the gas is rotating rigidly and has a constant temperature. The dependent 
variables undergo a rapid change at the radius where the discontinuity in the driving 
occurs, i.e. a vertical shear layer can be identified there. For small to moderate Mach 
numbers, the rigid-body rotation is close to the one defined by the driving. As the 
Mach number is increased, leading to a strengthened density variation, the magnitude 
of the rigid-body rotation is greatly reduced and the gas becomes increasingly cooled 
in the geostrophic zone. This cooling counteracts the effects on the Ekman-layer 

11-2 
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FIQURE 5. As figure 4 except T~ = 10. 

suction caused by the decrease in the rotation rate of the gas. For rlo of 0(1), a 
geostrophic zone can no longer be clearly identified in the centre region. The swirl 
velocity here is one magnitude smaller than the driving and it is further reduced as 
the Mach number is increased. Apart from the vicinity of 7 = qo, the temperature 
in the centre region is constant with the gas being cooler than the basic state. The 
amount of cooling does not increase monotonically with the Mach number however. 
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6. Conclusions 
Thick E! Stewartson layers in a rapidly rotating gas have been investigated by 

numerical integration of the governing equation for layers extending in the positive 
radial direction and in terms of a Frobenius-series solution for layers extending in 
the opposite direction. 

Due to the variation of the basic density field, the a layer is compressed in the 
positive radial direction. This is in agreement with Bark & Bark (1976), whose 
analysis incorporated a weak density variation across the @ layer, and the results 
by Bark & Meijer (1982) for thick Zd layers. On the other hand, a layers extending 
in the negative radial direction are likely to extend fully to the axis of symmetry 
because of the density variation and, consequently, a clear distinction in terms of 
a geostrophic flow and an Ef-layer flow cannot always be made. Curvature effects were 
found to play a significant role in this case. 

Appendix A: a Frobenius-series solution for the centre region 
A Frobenius-series solution for the dependent variable g can be constructed in a 

straightforward manner. One finds 
+m 

fl-0 
9 = x bf17,+l, 

( -  1)"1 
ek = (it- k) K~~ for k 2 3. 

k !  

The F, are defined by the following series: 

(A 2 i )  

/? = yM2/(273 and gn = 0 for n < 4 and gn = 1 for n 2 4 .  Note that if the right-hand 
side of (2 .254  is equal to zero, all Ffl are equal to zero and only even b, will be non-zero. 
The series (A 1) cannot be expected to converge in the whole interval 0 6 7 6 7, 
unless 

a ( y - 1 ) W  < 4 .  (A 4) 

Combination of the solution (A 1) with (2.21) and (2.253, c )  gives 
+m z, 
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where T, is a constant and the a, term is the homogeneous solution used in the 
reduction of order. Note that, at  this point, there are three arbitrary constants : a,, 
b, and T,. By now making use of (2.22a), (2.24), (A l) ,  (A 5) and (A 6), it follows that 

b, = ~ e - ~ ~ M z ( a o - + , ~ - o + ~ ) ,  (A 7) 

(A 8% b)  V B  where w = lim-, 8 = lim TB. 
7 4  7 I*, 

Thus, there are two constants of integration: a, and T,. This is consistent with the 
fact that the dependent variables in the centre region describe both the geostrophic 
flow and the Stewartson layer. Note that for large values of the Mach number, b, 
becomes exponentially small and the swirl velocity can be expected to approach 
rigid-body rotation in most of the region in the case when the series in (A 3) is identical 
to zero. 

It turns out to be advantageous to write the solutions (A 5) and (A 6) in the form 
given in (3.2) and (3.3). In  those equations, vup and Tp is the particular solution 
obtained by letting a, = b, = T, = 0 in ( A 5 )  and (A6) ,  and vc and T, is the 
homogeneous solution corresponding to the choice of a, = 1 and b, = +-iyM' (and, 
of course, all F, = 0). 

Appendix B: the heavy-gas approximation 
The case of a heavy gas is from a practical point of view an important asymptotic 

limit. In  this case y -  1 = o(1) is the natural expansion parameter. For UP, at room 
temperature, this parameter equals 0.067. The leading-order problem can be obtained 
by equating K~ to zero in (2.25) and (2 .21) .  In this limit, these equations can be 
integrated once. One finds 

T = 2(c, lnq+c2), (B 2 )  

where c2 is a constant of integration. The constants c1 and c2 will each take on different 
values in the centre and outer regions. The solution (B 2 )  is clearly of geostrophic 
nature. In what follows, it is assumed that the driving is given by (5.1) and that the 
slender-centrifuge approximation is valid. 

In the centre region, the solutions (B 1) and (B 2 )  become 

where 

v(7) = (W+iTo)7+BVC(7), 

T = To = constant, 
+a 

n-0 
vc = C 

a, = 1, 

In the outer region the following approximations to the solution of (B 1) as 7 + + GO 

(B 6a)  7 wI x c17 ln-, 
7P 

can be constructed: 

w* x l;l-ip;beTv+, (B 6b) 
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where now 

The temperature field is given by 
TI = 2c, ln-, 7 

7P 
which is an exact solution of (B 2) in the outer region. 

The WKB-type solution w+ in (B 6b)  was used to provide starting values for a 
numerical integration of (B 1 )  using a scheme similar to the one described in $4. The 
approximate solution so obtained and the series solution (B 5 ) ,  both valid for heavy 
gases, were used in testing the numerical codes for the general case. 

By considering the conditions on the temperature field at  7 = 70, namely that it 
and its derivative both be continuous, it follows that 

T, = c ,  = 0. (B 8) 

v(7) = C V S ( T ) ,  (B 9) 

The solution in the outer region is, hence, given by 

where ws(q) = w+(q). By requiring that the azimuthal velocity and its derivative be 
continuous at 7 = qo, one finds that 

B = O (  w ws(70) -70 4(70)), (B 10a) 

(B l ob )  

where w = "c(70) 4 7 0 )  -4(70) "s(70). (B 1Oc) 

Another interesting asymptotic limit is the small-Mach-number approximation. In 
this limit, the leading-order equations are given by (B 1 )  and (B 2)  with po replaced 
by unity. Hence 

V C ( 7 )  = 4(?), (B l l a )  

%(7) = 4 ( 7 ) ,  (B 1 1  b )  

where I ,  and K ,  are the modified Bessel functions. The results (B 3), (B 4) and 
(B 7)-(B 10) also hold in this limit. It follows that 

w 
C = - (  w %(70)--704(70))~ 

(B 12a) 

(B 12b) 

It is easily verified that the homogeneous-fluid case is recovered by letting v0 + + co 
in the results (B 3) ,  (B 8), (B 9), (B 1 1 )  and (B 12). 
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